
A State Of Perl 6
The growth of Camelia in the past year or so.

Elizabeth Mattijsen
24 August 2014

Wishing TimToady All The Best!

Hi, I’m Camelia!

And I’ve been Growing!

Nom Nom?

Rakudo and NQP!
Internals Workshop

• September 2013 in Frankfurt, Germany

• Developed / Presented by Jonathan Worthington

• 20 Attendees

• Course materials open-sourced

• http://6guts.wordpress.com/2013/09/17/material-
from-the-rakudo-and-nqp-internals-course

http://6guts.wordpress.com/2013/09/17/material-from-the-rakudo-and-nqp-internals-course

12 Monthly Releases!
with new Features

Buf, squish, Promise, Thread, Channel, is default,
is dynamic, will (phaser), once, start, .VAR, tr///,
async sockets, EVAL, Nil, is DEPRECATED, uniname,
uniprop, unival, Supply, winner, on, univals, minpairs,

 maxpairs, rotor, is cached, act, batch, stable, watch_path,
 bytes_supply, chars_supply, signal, first-index, last-index,

grep-index, $*KERNEL, $*DISTRO, $*VM, $*PERL, later, earlier,
use v5, LABEL:, next LABEL, last LABEL, :42nd, zip-latest,

 subbuf-rw, LoL, SEQ, HyperWhatever, —profile
 (and all the other things I missed)

Not to mention the many bugfixes!
and many, many optimizations

3 Backends!
to Choose From

• MoarVM!

• Most functional, fastest, most development

• JVM!

• Only no signal support yet, very stable

• Parrot!

• Old faithful, no asynchronous support

Features that Perl 5 stole!
(recently)

• Subroutine signatures!

• Fully functional, with multi-method dispatch

• Lexical subs!

• Almost everything is lexical, subs also

• Smartmatch!

• Still fully functional, not experimental!

MoarVM!
(Metamodel On A Runtime)

• The Virtual Machine for Perl 6

• First 1.5 year development in secret

• Now about 8 man years of development

• Using proven external libs when possible

• Running Rakudo since January

• http://www.moarvm.org/features.html

http://www.moarvm.org/features.html

S17 - Concurrency
Design Philosophy	
 Focus on composability	
 Boundaries between synchronous and asynchronous should be explicit	
 Implicit parallelism is OK	
 Make the hard things possible	
Schedulers	
Promises	
Channels	
Supplies	
System events exposed as Supplies	
I/O features exposed as Supplies	
The Event Loop	
 Threads	
 Atomic Compare and Swap	
Low-level primitives	
 Locks	
 Semaphore

Rewritten from Scratch!
http://perlcabal.org/syn/S17.html

http://perlcabal.org/syn/S17.html

Asynchronous!
 and Reactive Programming

• Powerful primitives to handle complex situations

• Promise, to be kept or broken

• Channel, for queuing data to be processed

• Supply, for reactive programming

• Thread, only if you really, really must

for ^10 { rand.sleep; .print };
0123456789
real	 0m5.486s
user	 0m0.259s
sys	 0m0.051s

await do for ^10 { start { rand.sleep; .print } };
6783524091
real	 0m1.217s
user	 0m0.260s
sys	 0m0.051s

Simple Explicit Parallelization

signal(SIGINT).tap({
 say "Thank you for your attention”;
 exit;
});

for @todo {
 state $quitting;
 state $tap = signal(SIGINT).tap({ $quitting = True });
 LAST $tap.close;
 LEAVE exit(1) if $quitting;
 … # code to protect;
}

Simple Signal Handling

Spesh!
(The MoarVM bytecode specializer)

Slightly longer:

Spesh takes code that is highly dynamic, with a lot of late binding and polymorphism,

and - based on the actual types that show up at runtime - generates specialized versions

of the code that do away with the costly late-binding. Or revert to the original code if it

turns out to be more dynamic than initially thought.

Not something Perl 5 can ever have!

Spesh seeks out hot code, sees what	
kinds of arguments it is given,	

 and makes a specialized version.

JIT for MoarVM!
(GSOC Project)

• Uses the information gathered by spesh

• To create JITted machinecode at runtime

• Now available with —jit-enable

• This is very exciting!

And Perl 5 Migration?

• use v5;!

• Parse Perl 5 source with Perl 6 grammar

• Create same intermediate AST’s

• So you can mix Perl 5 and Perl 6 code at will

• Now being redeveloped as a proper “slang”

So. Nom Nom?

Are you an!
Early Adopter?

• What are you waiting for?

• Get rakudobrew!

• justrakudoit.wordpress.com/2014/05/05/rakudobrew

• Gives you the most recent Rakudo easily!

Do you use Moose!
with Type Checking?

• Clearly, you’re not too worried about performance

• You value ease of development!

• Then Perl 6 is there for you now!

• https://github.com/rakudo/rakudo/

• Word has it, Rakudo Perl 6 on MoarVM is now faster
than Perl 5 with Moose (even without Type Checking)

https://github.com/rakudo/rakudo/

Want a quick intro?

• Learn Perl 6 in Y minutes

• The best thing we have to an intro at the moment

• http://learnxinyminutes.com/docs/perl6/

http://learnxinyminutes.com/docs/perl6/

Perl 6

Perl 6
More of what made!

Perl 5 great…!
…and less of what made!

 Perl 5 grate!

(Courtesy Damian Conway)

A State Of Perl 6
The growth of Camelia in the past year or so.

Elizabeth Mattijsen
24 August 2014

Questions?

